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A lattice Boltzmann scheme is developed for homogeneous mixture modeling, based on the multiple-
relaxation-time (MRT) formulation, which fully recovers the Maxwell-Stefan diffusion model in the continuum
limit with (a) external force and (b) tunable Schmidt number. The theoretical basis of the proposed MRT
formulation is a recently proposed Bhatnagar-Gross-Krook-type kinetic model for gas mixtures [Andries ef al.,
J. Stat. Phys. 106, 993 (2002)] and it substantially extends the applicability of a scheme already proposed by
the same author, which used only one relaxation parameter. The recovered equations at the macroscopic level
are derived by an innovative expansion technique, based on the Grad moment system. Some numerical simu-
lations are reported for the solvent test case with external force, aiming to find the numerical ranges for the
transport coefficients that ensure acceptable accuracies. The numerical results reduce the theoretical expecta-
tions, which are based on a strong separation among the characteristic scales.
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I. INTRODUCTION

Recently, the lattice Boltzmann method (LBM) has been
proposed as a simple alternative to solve simplified kinetic
models. Starting from some pioneering work [1-3], the
method has become more systematic [4,5] by means of a
better understanding of the connections with continuous ki-
netic theory [6,7] and by widening the set of applications that
can benefit from this numerical technique. Depending on the
considered LBM scheme and the particular application, the
final goal may be to solve the macroscopic equations recov-
ered in the continuum limit (in this case, the LBM works as
an alternative macroscopic solver) and/or to catch rarefaction
effects (which usually require larger computational stencils
and make the LBM similar to kinetic discrete-velocity mod-
els).

When complex fluids are considered and the interparticle
interactions must be taken into account, the discretized mod-
els derived by means of the lattice Boltzmann method may
offer some computational advantages over continuum-based
models, particularly for large-scale parallel computing. In or-
der to appreciate the connection between the lattice Boltz-
mann method and the conventional finite-difference tech-
niques, it is useful to recognize that this method can be
considered a subclass of the fully Lagrangian methods [8,9].
A more complete and up-to-date coverage of various previ-
ous contributions about the LBM is beyond the purposes of
the present paper, but can be found in some review papers
[10,11] and books [12-14].

In the present paper, the attention will be focused on the
development of a LBM scheme for homogeneous mixture
modeling in the continuum limit. A lot of work has been
performed in recent years in order to produce reliable lattice
Boltzmann models for this application. See Ref. [15] and the
bibliography therein for a complete discussion of this topic.

Among the most meaningful, a LBM scheme [16], which
is very close to the Hamel model approach [17,18], has been
recently proposed that uses a variational procedure aiming to
minimize a proper H function defined on the discrete lattice
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[16]. In particular, this scheme [16] has the advantage of
highlighting the fact that, when more than two components
are considered, the macroscopic equations, recovered by the
model in the continuum limit and ruling the mass transfer,
should approach the macroscopic Maxwell-Stefan model,
which properly takes into account nonideal effects (osmotic
diffusion, reverse diffusion, and diffusion barrier), neglected
by the simpler Fick model. (a) Unfortunately this model con-
sistently recovers the Maxwell-Stefan diffusion equations in
the continuum limit only within the macroscopic mixture-
averaged approximation [19], i.e., only if proper mixture-
averaged diffusion coefficients for each component are con-
sidered. (b) Moreover this model, like all the previous ones
strictly based on the Hamel model, cannot satisfy the indif-
ferentiability principle [20] prescribing that, if a Bhatnagar-
Gross-Krook- (BGK-)like equation for each component is
assumed, this set of equations should reduce to a single
BGK-like equation, when mechanically identical compo-
nents are considered.

In order to fix both the previous problems, a different
LBM scheme has been proposed [15]. As a theoretical basis
for the development of the LBM scheme, a BGK-type ki-
netic model for gas mixtures, recently proposed by Andries,
Aoki, and Perthame (AAP) [21], was considered. The main
idea of this LBM scheme is very simple: the Maxwell-Stefan
model can be obtained in LBM models by allowing momen-
tum exchange among different components according to the
Maxwell-Stefan prescriptions. As a side effect, the obtained
model satisfies the indifferentiability principle.

Even though the previous model [15] pointed in the right
direction, it was still affected by the limit of the single-
relaxation-time formulation. In particular, this does not allow
one to tune the kinematic viscosity independently of the dif-
fusion transport coefficients and consequently to tune the
Schmidt number, i.e., the ratio between the kinematic viscos-
ity of the mixture and the diffusion coefficient of a single
component. Clearly this reduces the applicability of the
model discussed in Ref. [15] to those cases where the aver-
age mixture transport is substantially zero, or negligible, in
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comparison with the diffusion phenomena. Unfortunately
many applications are characterized by a meaningful global
transport, ruled by the total pressure gradients inside the
mixture [19].

Hence the goal of this paper is twofold: (1) to design a
multiple-relaxation-time (MRT) formulation of the already
proposed model [15] and to prove that the recovered equa-
tions at the macroscopic level are consistent with the
Maxwell-Stefan model with an external force, by means of
an innovative expansion technique based on the Grad mo-
ment system; and (2) to discuss the implementation of a
generic external force in the numerical scheme, by keeping it
as general as possible, but compatible with the assumption of
low-Mach-number flows, as usually prescribed by the lattice
Boltzmann schemes.

This paper is organized as follows. In Sec. II, the pro-
posed multiple-relaxation-time LBM scheme is presented,
the macroscopic equations are derived by means of an inno-
vative expansion based on the Grad moment system, and
finally some details for an efficient implementation are dis-
cussed. Section III reports some numerical results for the
solvent test with external force: in particular, the numerical
ranges for the Schmidt numbers are obtained by discussing
the desired accuracy with regard to the diffusion transport
coefficients. Finally, Sec. IV summarizes the main results of
the paper.

II. MRT LATTICE BOLTZMANN SCHEME
A. AAP model with forcing

Numerous model equations are influenced by Maxwell’s
approach to solving the Boltzmann equation by using the
properties of Maxwell particles [22] and the linearized Bolt-
zmann equation. The simplest model equation for a binary
mixture is that by Gross and Krook [23], which is an exten-
sion of the single-relaxation-time model for a pure system,
i.e., the celebrated Bhatnagar-Gross-Krook model [24]. A
complete review of BGK-type kinetic models for mixtures
can be found in Ref. [21] and of pseudokinetic models for
LBM schemes in Ref. [25].

In this paper, we focus on the BGK-type model proposed
by Andries, Aoki, and Perthame [21], in the case of isother-
mal flow, which is enough to highlight the main features. A
complete derivation and discussion of the LBM scheme
based on the AAP model without external forcing and with
an elementary single-relaxation-time formulation can be
found in Ref. [15]. The model shows some interesting theo-
retical features, in particular in terms of satisfying the indif-
ferentiability principle and fully recovering the macroscopic
Maxwell-Stefan model equations in the continuum limit
[15]. In this paper, (a) the external forcing implementation
and (b) a MRT formulation for this model will be developed.

The AAP model is based on only one global (i.e., taking
into account all the components s) operator for each compo-
nent o, namely,

e e

~+H Vi
ot (9x,»

=Aa—(fg—(*)_ftr) +d0" (1)

where £, 7, and V; are the space coordinate divided by the
mean free path, the time divided by the mean collision time,
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and the discrete molecular velocity divided by the average
molecular speed, respectively (Boltzmann scaling); (1) fy)
is the equilibrium distribution function for the component o;
(2) A, is the linear collisional operator, which, according to
the previous scaling, is made up of constants of the order of
unity; and finally (3) d,, is the forcing term.

Since the LBM does not need to give the accurate behav-
ior of rarefied gas flows, a simplified kinetic equation, such
as the discrete-velocity model of the isothermal BGK equa-
tion with constant collision frequencies, is often employed as
its theoretical basis. The set of considered discrete velocities
is the so-called lattice. In particular, V; is a list of the ith
components of the velocities in the considered lattice and f
=fo(+)fo 18 a list of discrete distribution functions corre-
sponding to the velocities in the considered lattice. Let us
consider the two-dimensional nine-velocity (D2Q9) model.
In the D2Q9 model, the molecular velocity V; has the fol-
lowing nine components:

v,=[0 1 0-101-1-117, ()

V,=[0 010 -111-1-1]". 3)

The components of the molecular velocity V| and V, are lists
with nine elements.

In the following sections, the main elements of the
scheme, i.e., (1) the definition of the local equilibrium f ),
(2) the linear collisional operator A, and (3) the forcing term
d,, will be discussed.

1. Local equilibrium

Before proceeding to the definition of the local equilib-
rium function f ), we define the rule of computation for the
listt. Let A and g be the lists defined by &
=[ho,hy,hy, ..., hg]" and g=[g0,81.82,...,85)". Then, hg is
the list defined by [hogg.n 81,1282, ... hsgs]”. The sum of
all the elements of the list & is denoted by (h), i.e., (h)
=3% ,h;. Then the (dimensionless) density p,, and momentum

1

G4i=Pglly; are simply defined by
ﬁo’= <fcr>7 qAO'i = <VLf0'> (4)

In contrast to what happens for single-fluid modeling, the
previous momentum is not used in the definition of the local
equilibrium. The key idea of the AAP model is that the local
equilibrium is expressed as a function of a special velocity
i, ., which depends on all the single-component velocities,

namely,

2
P m- By, .. .
Ugi=Ugj + E = x;(usi - um’) > (5)
S m0m§ mm

where m,, and m, are the molecular weights for the compo-
nents o and s respectively; £.=p,/p (where p=2,p,) is the
mass concentration; m is the mixture-averaged molecular
weight defined as 1/m=X,x,/m, or equivalently m
=3 J,ng and finally B,.=B(m,,m,) and B,,,=B(m,m) are
the so-called Maxwell-Stefan diffusion resistance coeffi-
cients. The latter parameters can be interpreted as a macro-
scopic consequence of the interaction potential between

056706-2



MULTIPLE-RELAXATION-TIME LATTICE BOLTZMANN...

components o and s and they can be computed as proper
integrals of the generic Maxwellian interaction potential (ki-
netic method) or in such a way as to recover the desired
macroscopic transport coefficients (fluid-dynamic method).
In particular, the generic resistance coefficient is a function
of both the interacting component molecular weights, i.e.,
By,=B(m,,m.), and the equilibrium thermodynamic state,
which depends on the total mixture properties only.
Introducing the mass-averaged mixture velocity, namely,

;= 2 xAsqui’ (6)
S
the definition given by Eq. (5) can be recast as

2
m- B
Ak A oS
um“”i"‘E( B
S mOJ/nS mm

- 1))@(&% ~d,). (D)

Consequently two properties immediately follow. If m, =m
for any component o, then (property 1)

2
* A m Bmm A A A A A
Uy =1 + 2 ( - 1)xox§(u§i — i) = 1. (8)

. \mmB,,,

Multiplying Eq. (5) by £, and summing over all the compo-
nents yields (property 2)

A% A m2 BU'G A A A A A
Ex(ruo'i=ui+ 2 E -1 xoxg(ugi_uo—i) =U;.
o o s \mgmsB,,

)

The second property is general, while the first one is valid
only for testing the applicability of the indifferentiability
principle.

By means of the previous quantities, it is possible to de-
fine the local equilibrium for the model, namely,

A Ak Ak 9 Ak Ak 2
Fot)i = PoWil Soi + 3(Vyillg) + Vol ) + E(Vliuo-l + Vil )

3 A Ak
- 5[(14(,1)2 + (u02)2]>, (10)
where
w=[4/9, 1/9, 1/9, 1/9, 1/9, 1/36, 1/36, 1/36, 1/36]",

(11)

while 5,,=(9-5¢,)/4 and s,;= ¢, for | =i=8. The param-
eter ¢, is introduced in order to take into account the differ-
ent molecular weights m, and consequently different internal
energies é, for the components, namely, é,=p,/p,=¢s/3-
This strategy has been already proved as effective [25] and
definitively simpler than other strategies [26]. Clearly p,, can
also be obtained as the moment of f, ., but this is not the
case for G,

Po= o) Goi=Vif o)) # Goi=Vif o). (12)

2. Collisional operator

The key idea of the multiple-relaxation-time approach
[3,14,27-29] is to relax differently the discrete moments as-
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sociated with a given LBM scheme. Even though the total
number of linearly independent moments is fixed (equal to
the number of lattice nodes, Q), the choice of the moments to
be considered in the relaxation (collision) process is not
unique. This set of moments is usually defined as the “mo-
ment basis,” because it is possible to compute by them any
other high-order moment (clearly in contrast with what hap-
pens in continuous kinetic theory). In particular, if the mo-
ment basis is selected as orthonormal, then some nice fea-
tures arise and this may increase the stability issues of the
numerical scheme and the efficiency of the computations
[28,29]. In the present paper, a simpler approach will be
preferred. For a complete discussion on how to select a
proper orthonormal basis for the MRT formulation in the
case of mixtures, see Ref. [25].

Let wus define a matrix M=[1; V;; V,; V%;
V3, ViV Vi(Vo)?s (V))2V,; (V1)3(V,)?]7, which involves
proper combinations of the lattice velocity components,
namely,

111 1 1 1 1 1 1
010-101-1-11
001 0 -11 1 -1 -1
010 1 0 1 1 1 1
M=l00o1 0 1 1 1 1 11| (@13
000 0 0 I -1 1 -1
000 0 0 1 -1 -1 1
000 0 0 I 1 -1 -1
000 0 0 1 1 1 1

Consequently the linear collisional operator A, can be de-
fined as A,=M~'A M, where

00 0 0 0 0 000
0N 0 0 0 0 00
00 N o 0 0 000
A +NZ NS\
00 0 —2—2 =220 000
2 2
A= PR LA I 4
00 0 =2—2 =290 000
2 2
00 0 0 0 A2 0 00
00 0 0 0 0 100
00 0 0 0 0 010
00 0 0 0 0 00 1
(14)

As it will be clarified later on by the asymptotic expansion,
x;i is the relaxation frequency controlling the diffusion pro-
cess, while N\ and )\fr are those controlling the viscous phe-
nomena. Some proper tuning strategy is defined in order to
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recover the desired transport coefficients in the continuum
limit. In particular,

PHYSICAL REVIEW E 77, 056706 (2008)

7
x§=x§(2—¢g)=%, (17)

where p=2_p,, v is the kinematic viscosity, and £ is a nu-

Ao\ = PBom _ pB(m,m) (15) merical parameter somehow related to the second viscosity
o= "6= p - 5 ’ coefficient (compressible effects are not rigorously recovered
by the considered lattice).
3. Forcing term
A=\, = L, (16) The external source d, can be directly designed in the
3v moment space as
|
(Pl APyl g

do' — M—l O, ﬁoég-l» ﬁg’ég’z, (p(’; (rl) (p )'A (r2) i O, O, 0, 0 , (1 8)

ox 1 &Xz

where Egi=di+l;(n~ and 4; is the acceleration due to an exter-
nal field acting on all the components in same way (for ex-

ample, the gravitational acceleration), while l;(,i is the accel-
eration due to a second external field discriminating the
nature of the component particles (for example, because of
their charge). As will be clarified later on by asymptotic ex-
pansion, the additional terms affecting the stress tensor com-
ponents must be considered in order to compensate the defi-
ciencies (in terms of symmetry properties) of the considered
lattice. From the computational point of view, if the external
force is not homogeneous in space, the previous forcing term
must be computed (eventually at each time step) by means of
a finite-difference formula involving neighboring nodes. This
goal can be achieved with second-order accuracy on the
compact stencil D2Q9.

B. Asymptotic analysis of MRT formulation by Grad moment
system

In this section the macroscopic equations of the MRT
LBM scheme are recovered by means of asymptotic analysis.
Many types of asymptotic analysis for the LBM exist
(Chapman-Enskog expansion, Hilbert expansion, Grad mo-
ment expansion, etc.), which are substantially equivalent for
the present purposes. The Chapman-Enskog expansion is still
the most popular approach to analyze LBM schemes, even
though, concerning mixture modeling, it shows some limits
[30]. On the other hand, the Hilbert expansion proposed in
Ref. [31] and derived by kinetic theory [32] offers some
advantages, even though all the macroscopic moments must
be expanded. Recovering macroscopic equations solved by
LBM schemes somehow shares some features in common
with the much more complex problem of recovering macro-
scopic equations from kinetic models. A complete review of
the latter problem is beyond the purposes of the present pa-
per, but detailed discussions can be found in Refs. [32,33]. In
this paper, we use a simpler approach based on (1) some
proper scaling, (2) the Grad moment system, and (3) recur-

sive substitutions. The method has been already used in order
to derive new numerical schemes [34].

The last method is not new and has some features in com-
mon with recently proposed asymptotic methods in kinetic
theory [35]. Recently the so-called order of magnitude ap-
proach has been proposed in order to derive approximations
to the Boltzmann equation from its infinite set of correspond-
ing moment equations [33,36,37]. This method first deter-
mines the order of magnitude of all moments by means of a
Chapman-Enskog expansion, forms linear combinations of
moments in order to have the minimum number of moments
at a given order, and then uses the information on the order
of the moments to properly rescale the moment equations.
The rescaled moment equations are finally systematically re-
duced by canceling terms of higher order. Moreover this
method can be further simplified.

(1) First, following Ref. [35], we will directly work on the
level of the moment equations. In this way, the key advan-
tage in analyzing LBM schemes in comparison with truly
kinetic models is that the moment system is automatically
truncated because of the discrete degrees of freedom of the
selected lattice and this automatically gives a closed equiva-
lent system of equations.

(2) This approach forces one to introduce the scales for
space and time, as well as separate scales for all variables
and their gradients. Most of the terms will be characterized
by the diffusive scaling, while for the remaining terms
(mainly due to forcing), a simple rule will be adopted. The
size of the force terms follows from the principle that a
single term in an equation cannot be larger in size by one or
several orders of magnitude than all other terms [35].

1. Diffusive scaling

First of all, a proper scaling must be introduced. In fact,
note that the units of the space coordinate and of the time
variable in Eq. (1) are the mean free path /. and the mean
collision time T, respectively. Obviously, they are not appro-
priate as the characteristic scales for the flow field in the

056706-4



MULTIPLE-RELAXATION-TIME LATTICE BOLTZMANN...

continuum limit. Let the characteristic length scale of the
flow field be L and let the characteristic flow speed be U.
There are two factors in the limit we are interested in. The
continuum limit means /. <L and the low-speed limit means
U<C, where C (=[./T,) is the average modulus of the par-
ticle speed. In the following asymptotic analysis, we intro-
duce the other dimensionless variables, defined by

X; = (ZC/L))?I’ t= (UTC/L)f (19)

Defining the small parameter € as e=I[./L, which corre-
sponds to the Knudsen number, we have x;=ex;. Further-
more, assuming

U/C=e, (20)

which is the key to derivation of the low-Mach-number limit
[32], we have t=€’f. Then, Eq. (1) is rewritten as

(9 [ (9 g
EZL + EVii
ot ox;

=A0'(f(r(*) _fa) +da—~ (21)

In this new scaling, we can assume

A

af om R
—=0(f), ——=0(m), (22)
Jda Ja

where f:fo_(*),fo_, a=t,Xx;, and ﬁz:ﬁg,éai.

2. Grad moment system

The key point of this section is to derive the macroscopic
equations and, consequently, the definitions of the recovered
transport coefficients.

The matrix M can be used to compute some equilibrium
moments. Let us introduce the general nomenclature for non-
conserved equilibrium moments,

n times m times

. — )
I}, 0 (1.0 1,22... 2)=(V} ;flr(*)). (23)

Recalling that the diffusive scaling implies ii,;=€u,; and

i,.=eu, ., the moments defined by means of the matrix M are

u | [

IT; €Pols

11, Polly

113, Po+ €Polutg)’?

Mfyoy=| 15, | =| Do+ €polu)

I}, Pl

I, €Poll1/3

I}, Pyl /3

| Miios | [Bof3 + €0(1051)°13 + €D, (103)/3 |

(24)

The previous nomenclature can be expressed for noncon-
served generic moments as well, namely,

n times
——

I, ., (1. 122..2)=(V{V3f,).  (25)

m times
——t—
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We can now apply the asymptotic analysis of the MRT LBM
scheme based on the Grad moment system. Let us compute
the first moments of Eq. (21) (corresponding to the first three
rows of the matrix M), namely,

aﬁa’ a(ﬁa'uo'i
——2 , —= %

=0, 26
ot (?x,» ( )
14 A(r ai (91_[1-- *
63([)—14 + e = \IT — L) + p ol
Jt ox

J
_ )\5 A * A A
=€ Jpo(ua'i - uo’i) + PoCoi

= GﬁE Bo‘sﬁo‘ﬁ;(usi - ua'i) + f)aéah

27)

where y,=p,/p is the molar concentration and the relation
mx,/m,=y, has been used. In deriving the previous equa-
tions, the assumption given by Eq. (15) has been considered.
First of all, it is worth the effort to point out that the previous
equations are consistent with the macroscopic Maxwell-
Stefan mass diffusion model [15]. Second, if u),—uy
~O(1), i.e., the constant U properly characterizes the order
of magnitude of the diffusion velocities too or, equivalently,
the diffusion velocities are large, then necessarily ¢,,;=€c,,
because of the above-mentioned principle that a single term
in an equation cannot be larger in size by one or several
orders of magnitude than all other terms.

In the momentum equation, the stress tensor appears. We
now search for simplified expressions of the stress tensor
components. The equations for the stress tensor components
involve higher-order moments like Il;;. According to the
assumed scaling, each moment dynamics is ruled first by its

equilibrium part, in this case HE,{, namely,

H;k = €/3(8jP ol o + 5kiﬁau:;j + SiPoll ) - (28)

Clearly Hfjk ~ O(e), which means that the equilibrium part of
these higher-order moments is of the same order as the ex-
ternal forces or, equivalently, that we cannot neglect the
terms due to external forces in designing a simplified expres-
sion for these higher-order moments. Consequently, the lead-
ing part of the equations for the higher-order moments yields
H;'kjk —ILj + €664 0P oC i = 0, (29)
where the fact that the higher-order relaxation frequencies
have been assumed equal to 1 is used, or, equivalently,

&

I = €/3(8;p oty + Sib ot + S olles) + €636 OifoC -
(30)

It is worth the effort to point out that the last term in the
previous expression is an error due to the intrinsic lattice. In
fact, for the D2Q9 lattice, the argument of the moment II;;
(for any i=1,2) is identical to that of the hydrodynamic mo-
ment I1; and this is an intrinsic drawback due to the fact that
all the lattice velocity components in the D2Q9 lattice have
modulus equal to 1. Fortunately the second-order moments
of the forcing terms have been designed in such a way as to
compensate the intrinsic errors of the considered lattice. In
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fact, after substituting the previous simplifications, the equa-
tions for the stress tensor components yield

dll oIl P
11 ‘e 11k + & (PoCo1)
ot ¢9xk (9x1
A+ N -\
= > (H -I)+—— (H -1,,)

2
I(PyCy
&2 (p 1)’
&xl

e2

(31)

Jll oIT, P
& 22+e 22k+62 (PoCo)

ot oxy, 0xy
A -\ A+

=%(H -I) + —— > (H - 1I,,)

" ga(ﬁactﬂ) i (32)

&Xz

dll, e 07H12k
ot (9xk

e2

=\(IT;, - 11,), (33)

where, in the equations for the diagonal components, the
terms due to the limits of the considered lattice have been
redundantly reported, even though the design of the forcing
term allows one to cancel them out.

Clearly, from the previous equations, HUEH;E PoOyjs
and this proves that p,d; is the leading term of the stress
tensor and it can be used in estimating the first term in the
left-hand side (LHS) of the previous equations. Moreover,
the advection terms of the LHS of the previous equations can
be approximated by Egs. (28). Finally, the previous substitu-
tion in terms of II;; yields

dpu’) Ipu.
Il 8ij+ € Pyt < (Potter) + (p”u‘”)>
j 3}\,/ &x] 6xl~
E( 1 1\dpou,
_P_____Elﬁ%’ (34)
3 )\V )\§ ﬂxk

where the assumptions given by Egs. (16) and (17) have
been considered. Taking the divergence of the previous ten-
sor yields

(71_[,-[ ~ ﬁpo’ _( I/l M ) 62 (92([30"’[2'[)
ax; o ox; Ptetel T 3y ax;

i a2([501’;(;*)

- . (35)
3)\§ (9x,- (9xk

Introducing Eq. (35) into Eq. (27) yields
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a(p,u,; d
_iﬁ@m;Lﬂmw)
3\, &sz» 3Ng 9x;9x;

Py

== Eﬂ?z Bagyaﬁs(usi_um’)"'ﬁa-cai- (36)
i S

The previous equation allows one to discuss the proper scal-
ing for the pressure p,. Clearly two sets of terms exist in Eq.
(36): the leading terms ~O(1) which describe the mass dif-
fusion (according to the Maxwell-Stefan model) and the
terms ~O(€?) which describe the viscous phenomena. Hence
the most general expression for the single-component pres-
sure is p,=p,+€p. (similar considerations lead to p,=p,
+€p) as well). In other words, it is possible to imagine that
the single-component pressure field p,, is due to two contri-
butions: a slow dynamics mainly driven by the diffusion pro-
cess p,, and a fast dynamics driven by the viscous phenom-
ena p,. Moreover it makes sense to assume that an external
field that discriminates among the particles by their nature,

ie., l;w», produces a term with the same order of magnitude as
those describing the diffusion phenomenon, while an exter-
nal field constant for all the components affects the viscous
phenomena only, i.e., c¢,;=€a;+b,;. This implies that the
terms depending on the spatial gradients in the forcing defi-
nition given by Eq. (18) are required by b,;, which is the
leading part. In the case of a; only, the corresponding force
(in lattice units) is so small that no correction is required
[31]. These considerations lead to

(?pa (?(ptrum'
— , —F -

=0, 37
ot (7x,» ( )
ayo’ pabzri
&_ZEBUSyUyq(ugi_uoi)+_’ (38)
Xi S P
d(psu
(po' ai (paumuw) i s po-
ot Ix; ox;
1 & Sl 1 & e
- (P 2(1-1) y— (P o'k) + poa. (39)
3)\1/ (7X] 3)\§ &X[ (9xk

Clearly, summing Eq. (38) over all the components o yields
2 psb,i=0, which means that large external fields acting at
the leading diffusion level are possible, as long as their net
effect is zero (otherwise a large net effect would produce
accelerations which are not compatible with the low-Mach-
number limit). Summing over the components yields

dp  d(pu;)
op , et

=0, 40
ot r?x,- ( )

056706-6



MULTIPLE-RELAXATION-TIME LATTICE BOLTZMANN...

apu) 4 L
Kot S (i) +

gt ax; G T o,
1 Flpuy) 1 Fpuy)

=T .2 ti_ +pa;, (41)
3N, Ox; 3Ngdx; 9 xy

where p’=2_p! and property 2 has been applied. Clearly
there is no equation for p=X_p,, which means that this
quantity is an arbitrary constant. This means that, at the lead-
ing diffusion level, density fields characterized by large con-
centration gradients are possible, as long as their net effect is
a nearly constant total density field (otherwise again the non-
smooth total density field would produce accelerations which
are not compatible with the low-Mach-number limit). Since
p is a constant, then the previous expressions can be simpli-
fied as

(}]l/ll'

oo, 42

o, (42)
du; 0 . lop'  Fu;
—_— — XU U )+———=v—Fs +a;. 43
at axjg( ot pax;  ox; (49

J

Clearly the previous equations are not the canonical Navier-
Stokes system of equations for the barycentric velocity u;,
because of the complex advection term in the momentum
equation. This is not due to the adopted asymptotic analysis
based on the Grad moment system. The same result would be
obtained by using the Hilbert expansion; see, for example,
Ref. [25]. If and only if the component particles have similar
masses, i.e., m,=m, then u, .= u; because of property 1, and
the previous momentum equation reduces to

(?u,- &ui i
—tuT A=V +a;. (44)
In this section, the macroscopic equations due to the pro-
posed MRT LBM scheme with forcing were derived. (a) The
model is consistent with the Maxwell-Stefan diffusion model
and (b) in the case of particles with similar masses, it allows
one to recover a Navier-Stokes system of equations for the
mixture barycentric quantities, with a tunable mixture vis-
cosity. Additionally (c) two types of forces are considered:
the first one which produces zero net effect at the mixture
level and the second which produces a global effect that is
compatible with the low-Mach-number limit.

C. Efficient numerical implementation

In the previous sections, the space-time discretization was
not discussed. It is well known that it is very convenient to
discretize LBM schemes along the characteristics, i.e., along
the lattice velocities, because they are constant and analyti-
cally known. However, the popular forward Euler integration
rule cannot be applied in this case because it leads to a lack
of mass conservation [25]. Consequently, a more accurate
scheme must be considered; for example, the second-order
Crank-Nicolson rule is enough to avoid this problem. Let us
use this rule to discretize Eq. (1), namely,
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f-;:fa"'- (1 - e)AU(fO'(*) _fo' + HA;(}(—;(*) _f;—)
+(1 - 0)d,+ 6d, (45)

where the argument (z,x;) is omitted and the functions com-
puted in (t+€,x;+€V,) are identified by the superscript +.
The Crank-Nicolson rule is recovered for #=1/2. The previ-
ous formula would force one to consider quite complicated
integration procedures [25]. Fortunately, a simple variable
transformation has already been proposed in order to sim-
plify this task [38], and successfully applied in the case of
mixtures [16]. This procedure has already been generalized
in the case of the MRT formulation [39].

Let us introduce a local transformation

8¢ =f0'_ GAU'(fO'(*) _fa) - adzr (46)

Substituting the transformation given by Eq. (46) into Eq.
(45) yields

g;= go'+A0'(1+ QAU)_l(fU(*) - go—) + (1+ HAO')_Id(T’
(47)

where it is worth the effort to remark that the local equilib-
rium remains unchanged. Essentially the algorithm consists
of (a) applying the previous transformation f,— g, defined
by Eq. (46), then (b) computing the collision and streaming
step g,— g by means of the formula given by Eq. (47), and
finally (c) coming back to the original discrete distribution
function g¢ — fF. The problem, in the case of mixtures, arises
from the last step. In fact, the formula required in order to
perform the last task (c) is

fo= I+ 6A%) (g + OALf 5 + Od7). (48)

Since d, depends in general on spatial gradients, it may not
be very simple to compute d; at the new time step, because
some of the neighboring values may not be available. Hence
the following assumption is considered: d}=~d(t,x;+€V)),
leading to the final formula

fo=U+0AY) [+ OALf o+ 0d,(t.x;+ €V)].  (49)

In order to compute both A? (depending on total pressure and
total density) and fg(*), the updated hydrodynamic moments,
i.e., the hydrodynamic moments at the new time step, are
required. Since the single-component density is conserved,
recalling Eq. (46) yields

po=1{g0): (50)

consequently it is possible to compute p}, p*, p*, and finally
AL

However, this is not the case for the single-component
momentum, because this is not a conserved quantity, and
hence the first-order moments for g; and f;, differ [16]. Re-
calling Eq. (46) and taking the first-order moment of it yields

056706-7



PIETRO ASINARI

<Vig;> = ﬁ;ﬁ;—'l - 9)\& A;(’fJr - ’2;1’) — 0p,Cy

O'O'l

= oty = 057 B 5L = ) = 75

(51)

It is worth the effort to point out an important property. Sum-
ming the previous equations for all the components yields

Gr=pria = 2 (Vighy + 02 piét (52)

which means that it is possible to compute p*i; directly by
means of g(r. For this reason, it is possible to consider a
simplified procedure in the case of particles with similar
masses.

1. Particles with similar masses

In the case of particles with similar masses, i, =i, and

Eq. (51) reduces to

(Vighy = priit,— ONSTpL(ir —iity) - 0pict,  (53)

0' ai’

and equivalently, by taking into account Eq. (52),
(Vigh)+ Op3et, + N*A*(Z (Vg + 0>, ﬁf,é:;i)

ool 1+ 60\

At At

(54)

Actually the situation is even simpler because the previous
formula is not needed. In fact, if 4=}, i, is enough by
Eq. (52) to compute ﬁr(*) for the back transformatlon given
by Eq. (49).

2. Particles with different masses

In the general case, Eq. (51) can be recast as
<V1g;> = qAO'l - 0)\ E Xo’q(x;é; - )2:—{2;1) aﬁ;A;z’ (55)

At A+ A+
where §,_.=p_ii,; and

m? B,
Mg By

Clearly x,. is a symmetric matrix. Finally, grouping together
common terms yields

At A St a n
(Vigh) + 015, = (1 NS (xagx:))q;
S

Xos = (56)

- 2% ;E (Xorsd2)- (57)

Clearly the previous expression defines a linear system of
algebraic equations for the unknowns §,. This means that in
order to compute the updated values for all §!. a linear sys-
tem of equations must be solved in terms of known quanti-
ties (V;g5). It is possible to verify analytically (for few com-
ponents) that the solvability condition of the previous linear
system is always ensured, for any combination of mass con-
centrations and Maxwell-Stefan resistances. However, a gen-
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eral mathematical proof for any number of components is
currently missing. Note that this eventual restriction of the
discussed scheme would be a constraint of the proposed nu-
merical implementation and not of the kinetic model itself.
The possibility to tune 6 is not available, because all the
schemes for #+ 1/2 may imply a lack of mass conservation.

In the degenerate case y,.=1, i.e., particles with equal
masses, Eq. (57) reduces to

(Vighy + 0pschi=(1+ NG — OND'&54T. (58)

which is equivalent to Eq. (54).

In the next section, the results for some numerical simu-
lations are reported.

III. NUMERICAL SIMULATIONS

The main improvement discussed in the present paper
with regard to previous work [15] lies in the possibility to
control the higher-order viscous dynamics independently of
the diffusion phenomenon. The Schmidt number, i.e., the ra-
tio between the mixture viscosity and the Fick diffusion co-
efficient Sc=v/D, is sometimes used to characterize the rela-
tive magnitude of the previous phenomena, in the limiting
cases for which the generalized Fick model applies. The nu-
merical simulations reported in this section aim (1) to prove
this feature, i.e., the possibility of tuning the Schmidt num-
ber, and (2) to find the stability and accuracy region of the
proposed scheme.

First of all, it is important to point out that the Schmidt
number intrinsically refers to a Fickian diffusion regime,
where a single diffusion coefficient D for a generic species
can be defined. In some limiting cases, the Maxwell-Stefan
diffusion model automatically reduces to the Fick model
with a proper diffusion coefficient depending on the local
concentrations. Following [15], the solvent limiting case
[40,41] will be considered and a standard procedure for mea-
suring the diffusion transport coefficients [26,42] will be
adopted.

Let us consider a ternary mixture realizing a Poiseuille
flow, i.e., a two-dimensional (2D) flow between two parallel
plates oriented along the direction of the x; axis of the ref-
erence system. The computational domain is defined by
(t,x,,x,) €[0,T]X[0,L;]X[0,L,]. The average mixture
transport of the barycentric velocity is ruled by Egs. (42) and
(43), which clearly depend on the external force. For the sake
of simplicity, only the term affecting the mixture barycentric
velocity will be considered, with a;=0.001 and a,=0, while
the term which discriminates among the particles by their
nature will be neglected, i.e., b,;=0. Assuming u,=0 and p’
constant, Eq. (43) admits, in steady state conditions, the fol-
lowing solution:

2
ul(xz)—u1(0>=a1—Lzﬁ(1 —ﬂ). (59)

2v L2 L2

It is possible to use the previous analytical solution to derive
a numerical measure of the kinematic viscosity realized by
the scheme. Introducing x,;=x;(L,/2) and xy=x,(0) yields
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a,L3
V= ‘—' 21, (60)
81y — uo)
where |-| is a spatial average on the domain [0,L,]

X[0,L,]. The measured kinematic viscosity »* may differ
from the theoretical one vE€[1,20], because of the numerical
errors.

Concerning the diffusion phenomenon, the molecular
weights of the components in the ternary mixture are m,,
=[1, 2, 3] and consequently the corrective factors are ¢,
=[1, 1/2, 1/3]. The theoretical Maxwell-Stefan diffusion
resistance is given by

-1/2
B(TQ:B<L+L> s (61)

my Mg

where BE[5,166]. Let us suppose that in our ternary mix-
ture the component 3 is a solvent, i.e., its concentration is
predominant in comparison with the other components of the
mixture. Hence y;=1 and consequently y;=0 and y,=0.
Under these assumptions, Egs. (38) reduce to

Vyi = Bysyys(us —uy) = Biay (v —uy), (62)

Vy, = Bysypys(uz — up) = Bozy (v — uy), (63)

where the last simplification assumes v =2y i = u3. Conse-
quently the measured diffusion resistances are given by

i 1 dy,/dx

Biy=—=|—"——|, (64)
D, yiv—up)

. 1 Ay,/dx

By=—=|—""1|, (65)
D; | y,(v—uy)

where D|=1/B}; and D;=1/B5, are the measured Fick dif-
fusion coefficients for the nonsolvent components. Combin-
ing the viscous and the diffusion phenomena, it is possible to
introduce the Schmidt numbers for the nonsolvent compo-
nents as well, ie., Scj=v*/D]{=v'B}; and Sc;=v"/D;
=V'B),.

Concerning the boundary conditions, at the inlet (x;=0)
and outlet (x=L,) of the computational domain, the periodic
boundary conditions apply. At the wall, for the sake of sim-
plicity, the incoming (unknown) components of the single-
species distribution functions f,; are assumed equal to the
corresponding components of the equilibrium distribution
functions with zero velocity, namely, f7.=plw;s;, where the
density p is extrapolated from the bulk along the normal
direction. It is well known that this simple boundary condi-
tion produces (unphysical) numerical velocity slip at the
wall. However, this drawback does not affect the accuracy of
the measured transport coefficients, if the numerical slip is
properly taken into account, as reported in Eq. (60). For
practical simulations, more advanced wall boundary condi-
tions [43,44] should be considered.

The initial velocity fields are zero for all the species, i.e.,
u,(0,x;,x,)=0 for all the species. On the other hand, the
initial conditions for the partial pressures are given by
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FIG. 1. Isocontours of the molar concentration y; in the domain
[0,L,]X[0,L,] at the time step t=T=6006, for the solvent test
case of a ternary mixture (y3=1 and consequently y;=0 and y,
=0).

pl(O,xl,xz):Ap[l +sin<2w%>] + Py, (66)
1

P2(0,x1,x,) =Ap[1 +cos(2w%)] + Py (67)
1

p3(0,x1,x) =1 = p1(0,x1,x) = p2(0,x1,x2) (68)

where, for the reported numerical simulations, Ap=p,=0.01.
The parameter p, is a small pressure shift in order to avoid
divisions by zero in computing the velocity by the corre-
sponding momentum.

The spatial discretization step is dx=dx;=dx, and the to-
tal number of grid points is Ny=L,/ox=60 and N,=L,/dx
=40. Similarly, the time discretization step is selected in such
a way that of~ dx in order to have ¢=0x/dt=1, and in par-
ticular N,=T/ 6t=600.

NEGERMY RN
30\\ AN

40

A\
AR

NAMVER LR RN
>2o\i\ \ 1 “\%‘)\'}”L\ \ l°‘\’°\
S5l ) | )seSS) | 338
NEVARNE VY YA )
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= 10 ° 920//30? 40/Q /5({//60
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FIG. 2. Isocontours of the molar concentration y, in the domain
[0,L,]X[0,L,] at the time step t=T=6006, for the solvent test
case of a ternary mixture (y;=1 and consequently y, =0 and
y2=0).
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In Figs. 1 and 2, the isocontours of the molar concentra-
tions y; and y, at the time step t=T=6006¢ in the domain
[0,L,]%[0,L,] are reported. Clearly the mixture’s barycen-
tric velocity produces a global transport on the right (along
the direction of the x; axis), which is maximum at the center
of the gap between the two plates and minimum at the wall
(the slip condition was assumed), because of the external
applied force. Recalling the initial conditions given by Eqgs.
(66) and checking the positions of the maximum values in
the concentration profiles, the transport at the center of the
gap leads to a shift on the right roughly equal to L,/4. Look-
ing more closely at the numerical solutions, the isocontour
corresponding to the molar concentration equal to 0.026 is
clearly narrower for species 1 than for the species 2. This
means that the value 0.026 is closer to the maximum of y,
(0.0263) than the maximum of y, (0.0270), or, in other
words, that the diffusion of the species 1 is proceeding faster
than that of the species 2 from the common initial value
(0.030) toward the common equilibrium value (0.020). This
makes sense because the assumed transport coefficients im-
ply B3 <B,;, which means a smaller diffusion resistance for
the species 1.

Let us check the transport coefficients, effectively recov-
ered by the numerical scheme. In Fig. 3, the comparison
between the numerical kinematic viscosity and the theoreti-
cal one is reported. Clearly the results are very good in the
whole range of Maxwell-Stefan diffusion resistances consid-
ered. This means that the diffusion phenomena are not affect-
ing the viscous phenomena much, and this could suggest that
a strong separation among the characteristic scales exists.

Unfortunately the opposite consideration is not correct. In
Figs. 4 and 5, the theoretical values for the Maxwell-Stefan
diffusion resistances are compared with the measured values.

25 : T T :
—Theory
-%-B,,=43,B,,=55
ool "E-B13=91,Byy =115 | i ]
D= B13 =18.9, 823 =24.0
-2x- B13 = 39.6, 823 =50.1
5 15--9-813=82.8, st= L (O L: A S :
‘_v H H
0
o
§ 1 . i e
=z
0 i i i i
0 5 10 15 20 25

Theoretical v

FIG. 3. Solvent test case for a ternary mixture: y3=1 and con-
sequently y; =0 and y,=0. Comparison between theoretical kine-
matic viscosity »€[1,20] and the numerical viscosity v* of the
proposed scheme, measured by Eq. (60), for different values of the
Maxwell-Stefan coefficients.
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FIG. 4. Solvent test case for a ternary mixture: y3=1 and con-
sequently y;=0 and y,=0. Comparison between theoretical
Maxwell-Stefan resistance coefficient for component 1, i.e., B3,
and the numerical resistance coefficient Bj; of the proposed
scheme, measured by Eq. (64), for different values of the kinematic
viscosity.

For high values of the Maxwell-Stefan resistance, an effect
of the kinematic viscosity appears, in particular, in the case
of low viscosity, which means high Reynolds numbers. This
means that, in order to reduce the numerical error on the
diffusion phenomena, the Reynolds number should be as

300 T T T
—Theory i
“¥-v=10

250 -&-v=1.9

-©-v=35

200

o] mm—

Numerical st

(01— ..

50—

0 50 100 150 200
Theoretical B23

FIG. 5. Solvent test case for a ternary mixture: y3=1 and con-
sequently y;=0 and y,=0. Comparison between theoretical
Maxwell-Stefan resistance coefficient for component 2, i.e., Bjs,
and the numerical resistance coefficient B5; of the proposed
scheme, measured by Eq. (65), for different values of the kinematic
viscosity.
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small as possible (or the dimensionless viscosity should be as
large as possible). The situation is worse for species 2, be-
cause ¢,=1/2<1 has been considered in order to take into
account the proper molecular weight. The correction works
fine, but it reduces the accuracy in case of non-negligible
Reynolds numbers. Finally, for small Maxwell-Stefan resis-
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tances, the situation is not clear, because of the overlapping
of the plotted curves.

To achieve a better insight into the situation, a more sys-
tematic simulation campaign was designed. Let us consider
the following sets of (logarithmically spanned) values for the
parameters v and (3, respectively:

r,={1.00,1.17,1.37,1.60,1.88,2.20,2.58,3.02,3.53,4.13, ...,
4.84,5.67,6.63,7.77,9.09,10.64,12.46,14.59,17.08,20.00}, (69)

I';={5.00,6.01,7.23,8.70,10.46,12.57,15.12,18.18,21.87,26.30,31.62, ...,
38.03,45.73,54.99,66.13,79.53,95.64,115.01,138.30,166.31}, (70)

where the latter together with Eq. (61) implies

I'z13=1{4.33,5.21,6.26,7.53,9.06,10.89,13.10,15.75,18.94,22.77,27.39,32.93, ...,
39.60,47.63,57.27,68.87,82.82,99.60,119.77,144.03}, (71)

I'pr3=1{5.48,6.59,7.92,9.53,11.45,13.77,16.56,19.92,23.95,28.81,34.64,41.66, ...,
50.10,60.24,72.44,87.12,104.76,125.98,151.50,182.19}. (72)

Let us consider a simulation campaign I'={vEI' , ABE 4},
which is composed of 20 X 20=400 runs. For each numerical
simulation, all the meaningful transport coefficients
(v*,B)3,B5;) are measured. Clearly the larger errors are ob-
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15.7

109+
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A

FIG. 6. Solvent test case for a ternary mixture: y3=1 and con-
sequently y; =0 and y,=0. Some simulations (20 X 20=400) were
performed, for different values of the kinematic viscosity vE€I',,
where I',, is defined by Eq. (69), and of the Maxwell-Stefan resis-
tance coefficient B3 € ' 3, where ['g 5 is defined by Eq. (71). The
asterisk means that the numerical error on the measured Schmidt
number Scj=v"B]; is acceptable (lower than 10%). Isocontours for
the Schmidt number Sc; are reported too.

tained for the measured Schmidt numbers Sc| and Sc;, be-
cause they come from the product of the elementary trans-
port coefficients. The numerical results are reported in matrix
form in Figs. 6 and 7 for Scj and Sc; respectively. Every

182.2

126.0

871

60.2

4.7
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FIG. 7. Solvent test case for a ternary mixture: y3=1 and con-
sequently y; =0 and y,=0. Some simulations (20X 20=400) were
performed, for different values of the kinematic viscosity vE€l',,
where I',, is defined by Eq. (69), and of the Maxwell-Stefan resis-
tance coefficient B,z € I'gy3, where I'gp3 is defined by Eq. (72). The
asterisk means that the numerical error on the measured Schmidt
number Sc;=v"B5; is acceptable (lower than 10%). Isocontours for
the Schmidt number Sc, are reported too.
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time the numerical error is lower than 10%, the correspond-
ing combination of transport coefficients is marked as ac-
ceptable for the scheme. This constraint when applied to Sc;
is more restrictive than when applied to Scj. This confirms
that taking into account different molecular weights by ¢,
<1 may show some limits, in the case of large mass ratios.
On the same plots, the theoretical values of the Schmidt
numbers are reported by some proper isovalues in the ranges
Sc, €[4.3,2880.6] and Sc,&[5.5,3643.7], respectively. In
order to ensure the desired accuracy for both the transport
coefficients for any combination, the Schmidt numbers must
be quite large: for this particular application, they should be
roughly larger than 1000.

Clearly, from the numerical point of view, the separation
of the characteristic scales, which was assumed in the devel-
opment of the scheme, works only asymptotically and the
stability and accuracy issues may reduce the actual applica-
bility of the scheme to a constrained range of theoretical
transport coefficients, depending on the considered applica-
tion. By the way, this situation is common to most lattice
Boltzmann schemes.

IV. CONCLUSIONS

A LBM scheme for homogeneous mixture modeling,
based on the multiple-relaxation-time formulation, which
fully recovers the Maxwell-Stefan diffusion model in the
continuum limit with (a) external force and (b) tunable
Schmidt number, was developed. This formulation allows
one to tune the relaxation frequencies of the collisional ma-

PHYSICAL REVIEW E 77, 056706 (2008)

trix independently of each other, and, in particular for the
present application, it allows one to tune the mixture kine-
matic viscosity independently of the Maxwell-Stefan diffu-
sion resistances. This is part of an ongoing effort to improve
existing LBM schemes for homogeneous mixtures. The same
author already proposed a scheme based theoretically on a
recently proposed BGK-type kinetic model for gas mixtures
[21], which used only one relaxation parameter. The actual
MRT formulation substantially extended the applicability of
the previous model.

The numerical simulations for the solvent test case with
external force confirmed the validity of the proposed formu-
lation and they allowed us to find the numerical ranges for
the transport coefficients that ensure acceptable accuracies.
The numerical results reduce the theoretical expectations,
which were based on a strong separation among the charac-
teristic scales. Essentially the Schmidt number needs to be
large enough to ensure acceptable results.
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